More Research Interests



H2/CH4 storage: We develop porous materials that can reach the DOE target and practical use. 

O2 evolution: We are interested in designing catalyst with low activation energy to generate molecular oxygen from water. 

CO2 sequestration: By tuning the interaction energy for different materials we intend to capture carbon dioxide more effectively.
Related Publications:

J. L. Mendoza-Cortes, Dissertation PhD, Caltech, 2012.

J. L. Mendoza-Cortes, T. A. Pascal, W. A. Goddard, J. Phys. Chem. A 2011115, 13852.

J. L. Mendoza-Cortes, W. A. Goddard,  Furukawa, O. M. Yaghi, J. Phys. Chem. Lett. 201218, 2671.

Dynamic covalent chemistry (reversible chemistry) is essential in constructing thermodynamically favored molecular architectures in high yields. We have applied this concept in the sysnthesis of:

Macrocycles: We use reversible alkyne metathesis to avoid the creation of long oligomers. 

3D-Covalent Organic Frameworks: We use reversible boronic acid/ester formation to create periodic frameworks. 


Related Publications:

W. Zhang, S. M. Brombosz, J. L. Mendoza, J. S. Moore, J. Org. Chem. 200570, 10198.

 H. M. El-Kaderi, J. R. Hunt, J. L. Mendoza-Cortes, A. P. Cote, R. E. Taylor, M. O'Keeffe, O. M. Yaghi Science 2007, 316, 268.

D. J. Tranchemontagne, J. L. Mendoza-Cortes, M. O'Keeffe, O. M. Yaghi, Chem. Soc. Rev. 2009, 38, 1257.

Perturbation theory:
We have used Mollet-plesset perturbation theory to find the dispersion interaction between different gases (O2, H2, CH4 and others) with other molecules and materials. 

Density functional theory (DFT):
We have implemented DFT with dispersion corrections to capture the dispersion forces between different molecules and transition metals.



Related Publications:

J. L. Mendoza-Cortes, S. S. Han, H. Furukawa, O. M. Yaghi, W. A. Goddard, J. Phys. Chem. A 2010114, 10824.

J. L. Mendoza-Cortes, S. S. Han, W. A. Goddard, J. Phys. Chem. A 2012116, 1621.

J. L. Mendoza-Cortes, W. A. Goddard,  Furukawa, O. M. Yaghi, J. Phys. Chem. Lett. 201218, 2671.

First principles van der Waals Force Field:
Using our accurate QM calculations, we develop terms to capture the dispersion interactions between molecules and materials with different gases.

Coarse Grained Force Field:
We have started the development of coarse grained force fields that can capture the relevant interactions at larger time scales (ms versus ps). The idea is to reduce the computer time and resources for MD.



Related Publications:

J. L. Mendoza-Cortes, Dissertation B.Sc., ITESM-UCLA-Caltech, 2008.

J. L. Mendoza-Cortes, S. S. Han, W. A. Goddard, J. Phys. Chem. A 2012116, 1621.

J. L. Mendoza-Cortes, W. A. Goddard, Furukawa, O. M. Yaghi,J. Phys. Chem. Lett.2012

Artificial Bone Scaffolds:
Developing our own coarse grained force field we have started calculating the properties of hydrogels which are materials that can be used for cartilage, tendons and ligaments.

Artificial Enzymes:
Prediction of structures of artificial enzymes based on multimetallic peptides. Our approach allows for first principle calculations and molecular dynamics.
Related Publications:

J. L. Mendoza-Cortes, Dissertation PhD, Caltech, 2012.